Exam Discrete Math

23 January 2023, 15•00-17 00

- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other ards
- Make sure to clearly and precisely state any results fiom the lecture notes you are using
- As usual, when using (exponential) generating functions you can lgnore issues to do with the radius of convergence etc
- Whte the answer to each questron on a separate sheet, with your name and student number on each sheet This is worth 10 points (out of a total of 100)

Exercise 1 (20 pts).

Let a_{n} satisfy the recussion $a_{n}-4 a_{n-1}+4 a_{n-2}=n$ for $n \geq 2$ and initial conditions $a_{0}=a_{1}=1$ Determine an (explicit, closed form) expression for a_{n}

Exercise 2 (20 pts).

Apply Kıuskal's algorithm to find a minımum spanning tiee in the followng edge-werghted gaaph

Make sure to clearly indicate, for each step of the algonthm, what actions are taken by the algonthm

Exercise 3 (20 pts)

Let $I_{1}, \quad, I_{n} \subseteq \mathbb{R}$ be open intervals of length one, and let G be their intersection graph That is $V(G)=[n]$ and $\imath \jmath \in E(G)$ lff $I_{2} \cap I_{\jmath} \neq \emptyset$ (Such a graph is called a unat unterval graph)
Show that $\chi(G)=\omega(G)$
(Hint consideı "greedy" colouring fom left to inght)

Exercise 4 (a:5,b:5,c:5,d:5,e:5,f:5 pts).
Recall that the Stnling numbers of the second kind, denoted $u_{n, h}$ in the lecture notes, count the number of unordered partations of $[n]$ me precisely k non-empty parts
a) Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of real numbers and let $\left(b_{n}\right)_{n \geq 0}$ be defined via

$$
b_{n}=\sum_{k=0}^{n} u_{n, k} \quad a_{k} \quad(\forall n \geq 0)
$$

Show that the EGFs \hat{A}, \hat{B} of these sequences satisfy the relation

$$
\hat{B}(z)=\hat{A}\left(e^{z}-1\right)
$$

(Hint You may wish to first recall, or derive from sciatch, the expression for the EGF \hat{U}_{k} of the sequence $\left(u_{u, k}\right)_{n \geq 0}$ given in the lectures, and then see if you can zewnte the LHS or RHS)

Recall that a cycle in a permutation π of $[n]$ is a set of distinct elements $\imath_{1}, \quad, l_{m} \in[n]$ such that $\pi\left(\imath_{1}\right)=\imath_{2}, \quad, \pi\left(\imath_{m-1}\right)=\imath_{m}, \pi\left(\imath_{m}\right)=\iota_{1} \quad$ The Stuling numbers of the first kind $s_{n, k}$ count the number of permutations of $[n]$ wth precisely k cycles While it is debatable whether a "permutation of the empty set" makes any sense, we find it convenent to set $s_{0,0}=1$ and $s_{0, k}=0$ for all $k \geq 1$
b) Show that $s_{n, k}$ satsifies the following recursion for $n, k \geq 1$

$$
s_{n, k}=s_{n-1, k-1}+(n-1) s_{n-1, h}
$$

(Hint either $\pi(n)=n$ or not)
c) Show that

$$
\hat{S}_{h}(z)=\frac{1}{h^{\prime}} \ln \left(\frac{1}{1-z}\right)^{h}
$$

for all $k \geq 0$
(Hint. as a first step you could use the previous part to derive the differential equations $(1-z) \quad \hat{S}_{h}^{\prime}=\hat{S}_{h-1}$ for $k \geq 1$.)
d) As you might have already observed, we have the identity

$$
\sum_{h} \hat{S}_{h}(z)=\frac{1}{1-z}
$$

Give a "combinatorial" explanation for this identıty in terms of numbers of permutations
e) Show that if $\left(a_{n}\right)_{n \geq 0}$ is some sequence and $\left(b_{n}\right)_{n \geq 0}$ is given by

$$
b_{n}=\sum_{h}(-1)^{n-h} \quad s_{n, h} \quad a_{h},
$$

then the EGFs \hat{A}, \hat{B} satisfy the identity

$$
\hat{B}(z)=\hat{A}(\ln (1+z)) .
$$

(Hint as an intermodiate step you might want to dotermine the EGF of the numbers $(-1)^{n-h} s_{n, h}$, which are sometimes called the signed Stuling numbers of the first kind)
f) Now deduce the following statement, known as "Stulng inversion" if $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ are such that

$$
b_{n}=\sum_{h} u_{n, h} \quad a_{h} \quad(\forall n)
$$

then

$$
a_{n}=\sum_{h}(-1)^{n-h} s_{n, h} \quad b_{h} \quad(\forall n)
$$

