EXAM DISCRETE MATH

23 January 2023, 15·00-1700

- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids
- Make sure to clearly and precisely state any results from the lecture notes you are using
- As usual, when using (exponential) generating functions you can ignore issues to do with the radius of convergence etc
- Write the answer to each question on a separate sheet, with your name and student number on each sheet. This is worth 10 points (out of a total of 100)

Exercise 1 (20 pts).

Let a_n satisfy the recuision $a_n - 4a_{n-1} + 4a_{n-2} = n$ for $n \ge 2$ and initial conditions $a_0 = a_1 = 1$ Determine an (explicit, closed form) expression for a_n

Exercise 2 (20 pts). Apply Kiuskal's algorithm to find a minimum spanning tree in the following edge-weighted graph

Make sure to clearly indicate, for each step of the algorithm, what actions are taken by the algorithm

(see next page)

Exercise 3 (20 pts)

Let $I_1, \ldots, I_n \subseteq \mathbb{R}^{\P}$ be open intervals of length one, and let G be their intersection graph. That is V(G) = [n] and $ij \in E(G)$ iff $I_i \cap I_j \neq \emptyset$ (Such a graph is called a *unit interval graph*). Show that $\chi(G) = \omega(G)$

(*Hint* consider "greedy" colouring from left to right)

Exercise 4 (a:5,b:5,c:5,d:5,e:5,f:5 pts).

Recall that the Stuling numbers of the second kind, denoted $u_{n,k}$ in the lecture notes, count the number of unordered partitions of [n] into precisely k non-empty parts

a) Let $(a_n)_{n>0}$ be a sequence of real numbers and let $(b_n)_{n>0}$ be defined via

$$b_n = \sum_{k=0}^n u_{n,k} \quad a_k \quad (\forall n \ge 0)$$

Show that the EGFs \hat{A}, \hat{B} of these sequences satisfy the relation

$$\hat{B}(z) = \hat{A} \left(e^z - 1 \right)$$

(*Hint* You may wish to first recall, or derive from scratch, the expression for the EGF \hat{U}_k of the sequence $(u_{u,k})_{n\geq 0}$ given in the lectures, and then see if you can rewrite the LHS or RHS)

Recall that a cycle in a permutation π of [n] is a set of distinct elements $i_1, \ldots, i_m \in [n]$ such that $\pi(i_1) = i_2, \ldots, \pi(i_{m-1}) = i_m, \pi(i_m) = i_1$ The Studing numbers of the first kind $s_{n,k}$ count the number of permutations of [n] with precisely k cycles While it is debatable whether a "permutation of the empty set" makes any sense, we find it convenient to set $s_{0,0} = 1$ and $s_{0,k} = 0$ for all $k \geq 1$

b) Show that $s_{n,k}$ satsifies the following recursion for $n, k \ge 1$

$$s_{n,k} = s_{n-1,k-1} + (n-1) \quad s_{n-1,k}$$

(*Hint* either $\pi(n) = n$ or not)

c) Show that

$$\hat{S}_k(z) = rac{1}{k!} \ln\left(rac{1}{1-z}
ight)^k,$$

for all $k \ge 0$

(*Hint.* as a first step you could use the previous part to derive the differential equations (1-z) $\hat{S}'_{k} = \hat{S}_{k-1}$ for $k \ge 1$.)

d) As you might have already observed, we have the identity

$$\sum_{k} \hat{S}_{k}(z) = \frac{1}{1-z}$$

Give a "combinatorial" explanation for this identity in terms of numbers of permutations

(see next page)

e) Show that if $(a_n)_{n\geq 0}$ is some sequence and $(b_n)_{n\geq 0}$ is given by

$$b_n = \sum_k (-1)^{n-k} s_{n,k} a_k,$$

then the EGFs \hat{A}, \hat{B} satisfy the identity

$$\hat{B}(z) = \hat{A}\left(\ln(1+z)\right).$$

(*Hint* as an intermediate step you might want to determine the EGF of the numbers $(-1)^{n-k}$ $s_{n,k}$, which are sometimes called the *signed* Stuling numbers of the first kind)

f) Now deduce the following statement, known as "Stuling inversion" if $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ are such that

$$b_n = \sum_k u_{n,k} \quad a_k \quad (\forall n),$$

then

$$a_n = \sum_{k} (-1)^{n-k} \quad s_{n,k} \quad b_k \quad (\forall n)$$

3